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ABSTRACT A data representation technique dubbed Kolmogorov model (KM), has been applied to
the beam alignment problem in large-dimensional antenna systems. The previous learning-based beam
alignment solely focused on utilizing the predictive power of KM, i.e., the capability of predicting the
outcome of random variables that are outside the training set, to reduce the beam training overhead.
However, a distinctive feature of KM, namely, the interpretability which enables the capability of extracting
additional information hidden inside the data, has not yet been exploited. Moreover, the prohibitively high
computational complexity of the existing KM learning algorithm offsets the benefits brought by KM and
hampers its application to large-scale problems. In this paper, we propose a joint beam alignment and tracking
framework by incorporating the predictability and interpretability of KM. Especially, our proposed scheme
enables a novel interpretable beam tracking that reveals insights on relations among the sounded observations
to alleviate the beam sounding overhead after the initial beam alignment. To reduce the computational
complexity of KM learning, two enhancement approaches, based on discrete monotonic optimization (DMO)
and dual optimization, respectively, are proffered. Numerical results demonstrate that the proposed methods
can reduce the computational cost of the existing KM learning algorithm by up to three orders of magnitude.
Furthermore, the proposed methods show superior beam alignment and tracking performance over other
state-of-the-art techniques, notably in the low signal-to-noise ratio (SNR) regime.

INDEX TERMS Beam tracking, Kolmogorov model (KM), discrete monotonic optimization (DMO), dual
optimization, predictability, interpretability, low latency.

I. INTRODUCTION
At the millimeter-wave (mmWave) spectrum, radio propaga-
tion suffers from severe path loss and atmospheric impair-
ments that are compensated for by using large antenna arrays
to produce directional narrow beams [1]–[3]. The so called
‘‘beam alignment’’ procedure, which finds the best transmit-
and-receive beam pair without estimating the channel state
information (CSI), is required to establish an available com-
munication link. A straightforward approach to the beam
alignment problem is exhaustive beam search, also known

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

as beam sweeping, which sequentially scans the entire beam
space. However, the overall training overhead is indeed
prohibitive due to the large size of beam codebooks in
mmWave massive multiple-input multiple-output (MIMO)
communication systems, offsetting the benefits of the abun-
dant bandwidth of mmWave that promises a higher channel
capacity [4], [5].

To reduce the overhead of exhaustive beam search, var-
ious approaches have been proposed in the past decade.
The hierarchical codebooks, which typically consist of a
small number of low-resolution wide beams at the upper
layer of the codebook and a large number of high-resolution
narrow beams at the lower layer of the codebook, were

117204 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4451-687X
https://orcid.org/0000-0002-4017-9530


Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking

proposed [1], [6], [7]. Other methods fallen into the same
‘‘structured beam alignment’’ paradigm include beam cod-
ing [8], [9], overlapped beam patterns [10], [11], and
compressed sensing-based algorithms [12]–[17]. Despite a
battery of such beam alignment techniques, there still remains
a challenge of further reducing the beam training over-
head especially when the mobility and link blockage are
considered.

While the reliability of initial beam alignment in mmWave
is well-understood, directional narrow beams for data trans-
mission, especially in mobile urban networks, can put beam-
forming gain in peril [18]–[20]. Due to mobility, frequent
misalignment and blockages require repeated beam align-
ment, which further lead to enormous overhead and perfor-
mance degradation. To be specific, the higher the mobility
of users, the more frequent the misalignment and blockage
events occur [21]. To remedy, the more resources are needed
to be allocated to maintain beam alignment. Additionally,
reliable operation at low signal-to-noise ratio (SNR) is critical
for mmWave communication systems that are limited by
heavy mixed signal processing with an excessive power con-
sumption. Thus, it is of great importance to explore efficient
methods capable of mitigating the beam sounding overhead
under mobility while exhibiting reliable performance in the
low SNR regime.

With the rapid development of the cutting-edge hard-
ware devices and signal processing units, the capability of
high performance computing makes the appealing machine
learning-based techniques possible to be applied to practical
wireless communication systems. Recently, a Kolmogorov
model (KM) learning-based beam alignment technique, moti-
vated by a data representation of binary random variables,
was introduced [22], [23]. In particular, the quality of beam
pairs was modeled by a double-index set of binary random
variables based on the received signal power. The learning
of KM parameters was formulated as a coupled combinato-
rial optimization problem, which can then be decomposed
into two subproblems including the linearly-constrained
quadratic program (LCQP) and binary quadratic program
(BQP). A block coordinate descent (BCD) method was
adopted to iterate between the two subproblems in an alterna-
tive manner. An elegant, low-complexity Frank-Wolfe (FW)
algorithm [24] was used to optimally solve the LCQP
by exploiting structure of the unit probability simplex.
Meanwhile, the BQP problem was handled by employ-
ing a semi-definite relaxation with randomization (SDRwR)
method [25]. However, the high computational complexity
of the latter prevents it from being applied to the system
equipped with large-dimensional array antennas. It is thus
critical to findmore efficient and fast KM learning algorithms
that are readily applicable to large-scale problems. Moreover,
the previous work only focused on the predictability (the
capability of predicting the outcome of random variables that
are outside the training set) in terms of reducing the beam
alignment overhead. Unfortunately, a distinctive advantage
of KM, i.e., the interpretability (the capability of extracting

additional information or insights that are hidden inside the
data) has not yet been exploited.

In this work, we leverage both the predictability and inter-
pretability of KM to enable low-latency beam alignment and
tracking for mmWave communication systems. The proposed
predictive beam alignment combined with interpretable beam
tracking can achieve a significantly reduced beam training
overhead. To be specific, the predictive power of the KM
plays an essential role in improving link connectivity by only
utilizing a subsampled beam set whose cardinality is smaller
than that of the entire beam codebook. After the initial beam
alignment, we predict future beam switching directions and
further narrow down the beam search procedure to few likely
beams by exploiting the interpretability of KM, thus avoiding
the enormous cost for beam tracking.

Moreover, in order to address the impractically high com-
putational complexity of the existing KM learning algorithm
relying on SDRwR [22], [26], we propose two enhanced
solvers in resolving the BQP subproblem of KM learning
in a more efficient way. In particular, discrete monotonic
optimization (DMO) and dual optimization are leveraged.
We demonstrate numerically that the proposed KM learning
methods can achieve comparable beam alignment perfor-
mance with a significantly reduced computational cost, com-
pared to the existing KM learning algorithm [26]. It is also
shown that the proposed methods by incorporating the pre-
dictability and interpretability of KM outperform the bench-
marks in terms of both the beam tracking overhead and
achievable throughput. Finally, the robustness of the proposed
methods in the low SNR regime is validated by simulation
results.

The rest of the paper is organized as follows. Section II
introduces the concept of KM and system model.
In Section III, the joint scheme of predictive beam alignment
and interpretable beam tracking is elaborated. We provide
two enhanced optimization-based methods for KM learning
in Section IV. Section V presents the numerical results. The
conclusions are finally given in Section VI.
Notations: A bold capital letter A is a matrix, a bold

lowercase letter a is a vector, and a calligraphic capital letter
A is a set with cardinality |A|. (·)T , (·)∗, b·c, and d·e are the
transpose, conjugate transpose, floor and ceiling operators,
respectively. ai, ai:j , [ai, · · · , aj]T (1 ≤ i < j ≤ N ),
‖a‖2, and supp(a) , {i|ai 6= 0, i ∈ {1, . . . ,N }} are the ith
element, subvector, `2-norm, and the support set of a ∈ CN ,
respectively. rank(A), trace(A), diag(A), and ‖A‖F represent
the rank, trace, main diagonal elements, and the Frobenius
norm of A, respectively. 〈A,B〉 = trace(ATB) denotes the
Frobenius inner product of matrices A and B with the same
size, and A � 0 indicates that A is positive semi-definite
(PSD). For A ∈ RN×N , λi(A) is the ith eigenvalue of A, i =
1, . . . ,N . RN

+, BN , and SN×N denote the nonnegative real-
valuedN×1 vector space,N×1 binary vector space with each
entry chosen from {1, 0}, and N×N symmetric matrix space,
respectively. N (µ, σ 2) and CN (µ, σ 2) are the Gaussian and
complexGaussian distributionswithmeanµ and variance σ 2,
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respectively. IN is theN×N identity matrix and ei denotes the
ith column of the identity matrix of appropriate size. 1 and 0
are all-one and all-zero column vectors, respectively. Finally,
I(E) is the indicator function that takes value 1 when the event
E happens and value 0 otherwise, and E1 ⇒ E2 means that
one outcome/event (E1) implies another one (E2).

II. PRELIMINARIES AND SYSTEM MODEL
The concept of KM and some preliminaries are first intro-
duced. The beam alignment and tracking system model of
mmWave MIMO communications is then presented.

A. KOLMOGOROV MODEL
Prior to introducing the KM of a binary random variable,
we review the fundamentals of Kolmogorov probability the-
ory by defining a measurable probability space [27].
Definition 1: A probability space (�, E,P) is a triple

formed by the sample space �, the event space E consisting
of the subsets of �, and a probability measure P defined
on (�, E). P(E) assigns a probability to the event E ∈ E
such that the following conditions hold: i) P(E) ≥ 0, ∀E ∈
E (nonnegativity), ii) P(�) = 1 (normalization), and iii)
P(∪∞i=1Ei) =

∑
∞

i=1 P(Ei) for the disjoint events Ei ∈ E , ∀i
(countable additivity).

A double-index set of binary random variables Xt,r ∈ X ,
{1, 0}, ∀(t, r) ∈ S , is considered, where X is the binary
alphabet of Xt,r and S denotes the set of all index pairs.
The set �, also known as the space of elementary events,
is defined as � , {ωd |d = 1, . . . ,D}, where ωd denotes
an individual elementary event and D is the dimension of
Kolmogorov space. Let Pr(Xt,r = X (x)) ∈ [0, 1] be the
probability that the event Xt,r = X (x) occurs, where x
denotes the index of X , i.e., X (1) = 1 and X (2) = 0.
By Definition 1, the probability of two realizations of Xt,r
(Xt,r = 1 or Xt,r = 0) can be expressed as

Pr
(
Xt,r = X (x)

)
= P

(
X−1t,r ({X (x)})

)
=

∑
ωd∈X

−1
t,r ({X (x)})

P(ωd ), x ∈ {1, 2}, (1)

where X−1t,r ({X (x)}) , {ωd ∈ �|Xt,r = X (x)} is the
inverse image of the event Xt,r = X (x). Since Xt,r is binary,
the following holds Pr(Xt,r = 1)+Pr(Xt,r = 0) = 1. Without
loss of generality, it suffices to focus on one outcome, for
instance, Xt,r = 1. By (1), the KM [26], [28] of Xt,r is given
by

Pr(Xt,r = 1) = θTt ψ r , ∀(t, r) ∈ S, (2)

where θ t , [P(ω1), · · · ,P(ωD)]T ∈ RD
+ is the probability

mass function vector and ψ r , [ψr,1, · · · , ψr,D]T ∈ BD is
the binary indicator vector with each entry being

ψr,d =

{
1, if ωd ∈ X

−1
t,r ({X (1)})

0, otherwise,
d = 1, . . . ,D.

In particular, θ t is in the unit probability simplexP , {p ∈
RD
+|1

Tp = 1}, i.e., θ t ∈ P , and ψ r denotes the support set

FIGURE 1. Diagram of the mmWave MIMO system with a fully analog
architecture.

of Xt,r (associated with the case when Xt,r = 1). In addition,
note that Pr(Xt,r = 0) = θTt (1−ψ r ).

B. MILLIMETER-WAVE MIMO SYSTEM MODEL
We consider a mmWave MIMO communication system,
as depicted in Fig. 1, where the transmitter and receiver are
equipped with Nt and Nr antennas, respectively. A single
radio-frequency (RF) chain is employed at both the transmit-
ter and receiver, and thus the analog beamforming/combining
is adopted. A narrow-band block fading channel is assumed
with a coherence interval being T channel uses. During a
coherence block, as shown in Fig. 2, the initial K τ channel
uses are utilized to find the best beamformer-combiner pair
(i.e., the beam alignment/tracking phase) and the remaining
T−K τ channel uses are set aside for data communication
via the well-aligned beam pair (i.e., the data transmission
phase), where τ denotes the channel block index. In par-
ticular, after the initial beam alignment, a beam tracking
procedure is necessary to maintain or adjust the well-aligned
beam pair by considering the beam switching and channel
evolution.

In the beam alignment phase, the transmitter chooses an
analog beamformer ft ∈ CNt×1 from the transmit beam
sounding codebook F (ft ∈ F), while the receiver selects an
analog combiner wr ∈ CNr×1 from the receive beam sound-
ing codebookW (wr ∈W). Let IF and IW denote the index
sets of the predefined codebooksF andW , respectively, with
cardinalities |IF | and |IW |. ft and wr satisfy the constant
modulus constraint, i.e., ‖ft‖2 = ‖wr‖2 = 1.
Let s ∈ C be the transmitted training symbol with unit

power. The received signal at channel block τ , yτt,r ∈ C,
can be expressed as (the channel block index τ is omitted for
conciseness)

yt,r = w∗rHfts+w∗rn, (3)

whereH ∈ CNr×Nt is the channelmatrix and n ∈ CNr×1 is the
additive complex white Gaussian noise vector with each entry
independently and identically distributed (i.i.d.) as zero mean
and σ 2

n variance according to CN (0, σ 2
n ). It is noted that the

SNR is 1/σ 2
n , and we can further define the received SNR as

η , |w∗rHft |2/σ 2
n , where |w

∗
rHft |2 denotes the beamforming

gain. The beam alignment problem, which is to find the
optimal beam pair by maximizing the beamforming gain, can
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FIGURE 2. Illustration of the beam alignment/tracking during multiple channel blocks.

be formulated as

max
ft ,wr
|w∗rHft |2

s.t. ft ∈ F ,wr ∈W. (4)

However, it is not practical for the receiver to calculate
the beamforming gain in (4) directly due to the lack of CSI.
Instead, the problem in (4) can be approximated by using the
received signal power as

max
ft ,wr
{γt,r , |yt,r |2}

s.t. ft ∈ F ,wr ∈W. (5)

It is worth noting that, under the fully analog beamforming
architecture, the best transmit-receive beam pair is found by
solving the beam alignment problem in (5). This is differ-
ent from the hybrid analog-digital precoding and combining
scenario where the estimated CSI is required at both the
transmitter and receiver [6], [13]–[15], [17]. A straightfor-
ward approach to solving (5) is the exhaustive beam search,
which requires both the transmitter and receiver to scan the
entire beam space (F andW). Unfortunately, this exhaustive
search method incurs a training overhead of |S| = |IF×IW |
(whose sampling rate is 100%), which indeed overwhelms the
available channel coherence resources due to the large size
of codebooks (|IF | and |IW |) in mmWave massive MIMO
systems.

To address this issue, a KM learning-based beam align-
ment was proposed by utilizing the predictive power of
KM [22], [23]. It was motivated by the fact that the
double-index random variable Xt,r in (2) can represent any
two-dimensional learning applications (involving matrices).
We will review the existing predictive beam alignment
scheme in Section III-A.

III. KM LEARNING-BASED FRAMEWORK
The KM learning-based framework by incorporating the pre-
dictive beam alignment and interpretable beam tracking is
elaborated in this section.

A. PREDICTIVE BEAM ALIGNMENT
The ‘‘good’’ or ‘‘poor’’ condition of the beam pair (ft ,wr ) for
(t, r) ∈ S , {(t, r)|(t, r) ∈ IF×IW }, where S contains all
beam pair indices of the transmit-and-receive joint codebook,
can be modeled by using the binary random variable Xt,r of
KM in (2) as{
Pr(γt,r ≥ δ) = Pr(Xt,r = 1) = θTt ψ r , ‘‘good’’
Pr(γt,r < δ) = Pr(Xt,r = 0) = θTt (1−ψ r ), ‘‘poor’’,

(6)

where δ > 0 is a predesigned threshold value for the received
signal power γt,r . To be specific, the beam pair (ft ,wr ) is
regarded as being well-aligned if γt,r ≥ δ.

In contrast to the exhaustive beam search, the KM learning-
based beam alignment only uses a subset of codebook K ,
{(t, r)|t ∈ I train

F ⊆ IF , r ∈ I train
W ⊆ IW } ⊂ S (also known

as the training set). Let pt,r be the empirical probability of
the beam pair (ft ,wr ) being well-aligned. Obtaining {pt,r } for
the training setK is a prerequisite for the KM learning-based
beam alignment. Frequency estimation (FE) was proposed
by estimating {pt,r }, ∀(t, r) ∈ K, over a time-slot interval
TFE [22]. Let y

(tFE)
t,r = w∗rHfts+w∗rn

(tFE) be the received signal
by sounding the beam pair (ft ,wr ) at time slot tFE during
a coherent channel block, the received signal power is then
provided as

γ
(tFE)
t,r =

∣∣y(tFE)t,r
∣∣2, tFE ∈ {1, . . . ,TFE}, ∀(t, r) ∈ K.

The final estimate of pt,r , attained by counting the number
of events in which the condition γ (tFE)

t,r ≥ δ holds, is given by

pt,r ≈ p(TFE)t,r ,
1
TFE

TFE∑
tFE=1

I(γ (tFE)
t,r ≥ δ), ∀(t, r) ∈ K. (7)

It is worth noting that the approximation in (7) becomes
tight as TFE increases.

Given the constructed training set (of empirical probabil-
ities), the KM learning-based beam alignment, composed of
training, prediction, and selection, is presented as follows.

VOLUME 9, 2021 117207



Q. Duan et al.: KM Learning for Millimeter-Wave Beam Alignment and Tracking

1) TRAINING
The KM-based beam training proceeds to optimize {θ t } and
{ψ r } by solving the `2-norm minimization problem:

{θ?t }, {ψ
?
r } = argmin

{θ t },{ψr }

∑
(t,r)∈K

(θTt ψ r−pt,r )
2

s.t. θ t ∈ P, ψ r ∈ BD,∀(t, r) ∈ K. (8)

To deal with the coupled combinatorial nature of (8),
a BCD method was proposed by dividing the problem in (8)
into two subproblems: i) LCQP for ∀t ∈ I train

F :

θ
(υ+1)
t = argmin

θ t∈P
θTt Q

(υ)
t θ t−2θTt w

(υ)
t +%t , (9)

where Q(υ)
t ,

∑
r∈It ψ

(υ)
r ψ (υ)

r
T
, w(υ)

t ,
∑

r∈It ψ
(υ)
r pt,r ,

%t ,
∑

r∈It p
2
t,r , It , {r|(t, r) ∈ K}, and υ is the index

of BCD iterations, and ii) BQP for ∀r ∈ I train
W :

ψ (υ+1)
r = argmin

ψr∈BD
ψT
r S

(υ+1)
r ψ r−2ψ

T
r v

(υ+1)
r +ρr , (10)

where S(υ+1)r ,
∑

t∈Ir θ
(υ+1)
t θ

(υ+1)
t

T
, v(υ+1)r ,

∑
t∈Ir

θ
(υ+1)
t pt,r , ρr ,

∑
t∈Ir p

2
t,r , and Ir , {t|(t, r) ∈ K}.

By exploiting the fact that the optimization in (9) was carried
out over the unit probability simplexP , a simple iterative FW
algorithm was used to optimally solve (9), while the SDRwR
was employed to asymptotically solve the BQP in (10) [26].

2) PREDICTION
The trained KM parameters {θ?t }, {ψ

?
r } are utilized to predict

probabilities over a test set T (a set of beam pairs that are not
sounded) as

p̂t,r , θ?t
T
ψ?r , ∀(t, r) ∈ T , (11)

where T ∩K = φ and T ∪K = S.

3) SELECTION
The optimal beam pair with the highest probability of being
well-aligned is selected by evaluating both the training and
test sets (K∪T ) as

(t?, r?) = argmax
(t,r)∈S

{p̂t,r = θ?t
T
ψ?r }. (12)

Based on the above three key steps, an overall KM
learning-based beam alignment procedure is provided in
Algorithm 1.

Note that, the predictability of KMwas exploited to reduce
the beam training overhead by using a subsampled code-
book. However, the existing KM learning method relying
on SDRwR to solve (10) suffers from a high computational
complexity (O(D4.5)) and is thereby difficult to be applied
to large-scale antenna-array systems [22], [26]. In particular,
the LCQP subproblem in (9), which can be solved by the
FW algorithm at the negligible cost of searching for the
minimum of an array (O(D)), has been well-studied [24],
while resolving the BQP subproblem in (10) introduces a
major computational bottleneck. This calls for more efficient
KM learning methods, which we will present in Section IV.

Algorithm 1 Overall KM Learning-Based Beam Alignment

Input: F ,W , K, I train
F , I train

W , D, δ, TFE, and IBCD. Initialize
{ψ (1)

r ∈ BD}r∈I train
W

.
Output: (t?, r?).
1: Estimate the empirical probabilities for K via FE:
2: for each tFE = 1, . . . ,TFE do
3: for each beam pair index (t, r) ∈ K do
4: Train the beam pair (ft ,wr ) and obtain γ (tFE)

t,r .
5: end for
6: end for
7: Compute {pt,r } according to (7).
8: Learn the KM parameters:
9: for υ = 1, . . . , IBCD do
10: i) Update θ (υ)t for t ∈ I train

F ;
11: ii) Update ψ (υ)

r for r ∈ I train
W .

12: end for
13: Obtain the final estimate {θ?t = θ

(IBCD)
t ,ψ?r = ψ

(IBCD)
r }.

14: Calculate the predicted probability for the beam pairs
which are not trained yet based on (11).

15: Determine the optimal beam pair according to (12).
16: return (t?, r?).

B. INTERPRETABLE BEAM TRACKING
The next challenge after the initial beam alignment is to
update/adjust the aligned beam pair to maintain the avail-
ability of the link, i.e., the beam tracking phase (τ > 1)
as illustrated in Fig. 2. However, the enormous overhead
induced by frequent beam realignment often makes the sys-
tem unbearable. Thus, the design of schemes that alleviate the
beam tracking overhead is of great importance.

To this end, a distinctive feature of KM, namely, the inter-
pretability, extracting insights that hidden inside the data
based on sounded observations, can be exploited. The fol-
lowing theorem provides a basis for the interpretable beam
tracking.
Theorem 1 (Logical Relation Mining): Suppose two ran-

dom events ‘γt,r1 ≥ δ’ and ‘γt,r2 ≥ δ’, whose KMs are given
by Pr(γt,r1 ≥ δ) = Pr(Xt,r1 = 1) = θTt ψ r1 and Pr(γt,r2 ≥ δ)
= Pr(Xt,r2 = 1) = θTt ψ r2 , respectively. If the support sets
of ψ r1 and ψ r2 satisfy the inclusion relation supp(ψ r2 ) ⊆
supp(ψ r1 ), then the following two logical relations hold:

γt,r1 ≥ δ ⇒ γt,r2 ≥ δ (Xt,r1 = 1⇒ Xt,r2 = 1), (13)

γt,r2 < δ ⇒ γt,r1 < δ (Xt,r2 = 0⇒ Xt,r1 = 0). (14)

Proof: See Appendix A.
Theorem 1 can be translated as: Given that the support set

of ψ r1 includes that of ψ r2 , if the beam pair index (t, r1) is
good, then it logically implies that the beam pair index (t, r2)
is also good. Conversely, if the beam pair index (t, r2) is bad,
then it logically implies that the beam pair index (t, r1) is bad
either. The above information can be leveraged to reduce the
beam tracking overhead.
Suppose the beam training set (subsampled codebook) for

beam alignment/tracking at τ th channel block is Kτ with
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FIGURE 3. Diagram of the KM learning-based beam alignment framework: a toy example (Nt = Nr = |IF | = |IW | = 4
and D = 4).

|Kτ | = K τ . Let {ψ?,τr } denote the set of learned binary
indicator vectors of KMat τ th channel block.Wefirst identify
a set of critical beam pair indices based on the empirical prob-
abilities at current channel block, associated with a transmit
beam index t , as

Cτt = {(t, ri)|pτt,ri ≥ α}, (15)

where pτt,ri denotes the empirical probability of the beam pair
index (t, ri) at τ th channel block and α ∈ [0, 1] is a thresh-
old. By exploiting the interpretability of KM, especially via
logical relation mining in Theorem 1, we obtain an expanded
set of critical beam pair indices as

Ĉτt =
|Cτt |⋃
i=1

{(t, rj)|supp(ψ?,τrj )⊆supp(ψ?,τri ), (t, ri) ∈ Cτt },

(16)

which encapsulates all potential good beam pair indices
for a fixed t . Moreover, by considering the possible beam
variations that the aligned beam pair (t?,τ , r?,τ ) may tran-
sit to its neighbors at next channel block (as depicted
in Fig. 2), a complementary set of beam pair indices is defined
by C̃τ+1 = {(t?,τ−1, r?,τ−1), (t?,τ−1, r?,τ ), (t?,τ−1,
r?,τ+1), (t?,τ , r?,τ−1), (t?,τ , r?,τ+1), (t?,τ+1, r?,τ−1), (t?,τ+
1, r?,τ ), (t?,τ+1, r?,τ+1)}. Then, the beam training set at next
channel block, i.e., Kτ+1, is given by

Kτ+1 =
{
∪t Ĉτt

}
∪C̃τ+1, (17)

with K τ+1 � K 1 (τ ≥ 1) where K 1
= |K1

| represent the
training overhead of the initial beam alignment.

Notice that the choice of α in (15) has an effect on the
interpretable beam tracking performance. On the one hand,
a large α is able to shrink the size of Cτt and Ĉτt , thus reducing
the beam sounding overhead at next channel block. On the
other hand, a shrunken Cτt may exclude any good beam pair
and cause performance deterioration. This tradeoff will be
further investigated in Section V-D.

The KM learning-based beam alignment framework
including training, prediction, and interpretation, is illustrated
by using a toy example in Fig. 3.

IV. OPTIMIZATION METHODS FOR KM LEARNING
In this section, two new approaches to the KM learning based
on DMO and dual optimization, respectively, are proposed to
solve the BQP subproblem in (10), reducing the exorbitantly
high computational cost of the existing SDRwR [26].

A. DISCRETE MONOTONIC OPTIMIZATION
We first present a lemma delivering an equivalent reformula-
tion of the BQP subproblem in (10).
Lemma 1: The BQP problem in (10) is equivalent to the

maximization of a difference of twomonotonically increasing
functions and its binary constraints ψ r ∈ BD can be equiv-
alently transformed to continuous monotonic constraints
as

max
ψr

{
f (ψ r ) = f +(ψ r )−f

−(ψ r )
}

s.t. g(ψ r )−h(ψ r ) ≤ 0,ψ r ∈ [0,1] (18)

where f +(ψ r ) , 2vTr ψ r , f
−(ψ r ) , ψT

r Srψ r , g(ψ r ) ,∑D
d=1 ψr,d , h(ψ r ) ,

∑D
d=1 ψ

2
r,d , ψ r ∈ [0,1] indicates that

0 ≤ ψr,d ≤ 1 for every d = 1, . . . ,D, and the index of BCD
iterations (υ in (10)) is omitted hereinafter for simplicity.

Proof: See Appendix B.
The combinatorial nature of the BQP problem in (10) is

attributed to the discrete constraints ψ r ∈ BD. In [22],
[26], this nuisance has been tackled by using SDRwR, which
incurs impractically high computational complexity. Unlike
SDRwR, the equivalent problem formulation leveraging the
difference of monotonic functions (DMF) in (18) dissolves
the intractable discrete constraints without any relaxation.
Motivated by Lemma 1, we propose to use a branch-reduce-
and-bound (BRB) algorithm [29] to directly solve (18), which
consists of three main steps provided below.

1) REDUCTION
We let M = [a,b] be one of the boxes that contain feasible
solutions to (18) and ν be the current maximum value of the
objective function f in (18). The reduced boxM ′ = [a′,b′] ⊂
[a,b] can be defined by new lower and upper vertices a′

and b′, respectively, without excluding any feasible solution
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Algorithm 2 DMO-Based Algorithm
Input: Sr , vr , and D.
Output: ψ?r .
1: Initialization: Set iteration number i = 1. Let Pi = {M},
M = [0,1],Ri = φ, and ν = f (0) = 0.

2: Reduction: Reduce each box in Pi according to (19)
and (20) to obtain P ′i = {[a′,b′]|[a,b] ∈ Pi}.

3: Bounding: Calculate µ(M ′) in (21) for eachM ′ ∈Mi ,
P ′i∪Ri.

4: Find the feasible solution: ψ (i)
r = argmaxψr

{f (ψ r ) >
ν|ψ r = d(a

′
+b′)/2e,M ′ = [a′,b′] ∈Mi}.

5: Update current best value: If ψ (i)
r in Step 4 exists, update

ν as ν = f (ψ (i)
r ); otherwise, ψ (i)

r = ψ
(i−1)
r and ν doesn’t

change.
6: Discarding: Delete everyM ′ ∈Mi such that µ(M ′) < ν

and let Ri+1 be the collection of remaining boxes.
7: if Ri+1 = φ then terminate and return ψ?r = ψ

(i)
r .

8: else
9: Let M (i)

= argmaxM ′{µ(M
′)|M ′ ∈ Ri+1}.

10: if ν ≥ εµ(M (i)) then ε-accuracy is reached and
return ψ?r = ψ

(i)
r .

11: else
12: Branching: DivideM (i) intoM (i)

1 andM (i)
2 accord-

ing to (22) and (23).
13: Update Ri+1 and Pi+1: Ri+1 = Ri+1\M (i) and

Pi+1 = {M (i)
1 ,M

(i)
2 }.

14: end if
15: end if
16: i = i+1 and return to Step 2.

ψ r ∈ [a,b], while maintaining f (ψ r ) ≥ ν [29] as

a′ = b−
D∑
d=1

αd (bd−ad )ed , (19)

b′ = a′+
D∑
d=1

βd (bd−a′d )ed , (20)

where αd = sup{α|α ∈ [0, 1], g(a)−h(b−α(bd−ad )ed ) ≤
0, f +(b−α(bd−ad )ed )−f −(a) ≥ ν} and βd = sup{β|β ∈
[0, 1], g(a′+β(bd−a′d )ed )−h(b) ≤ 0, f +(b)−f −(a′+β(bd−
a′d )ed ) ≥ ν} for d = 1, . . . ,D, where ed is the d th column
of ID. Note that the optimal values of αd and βd can be found
by referring to the compactness of α, β ∈ [0, 1] and utilizing
the monotonicity of f +, f −, g, and h (for instance, by using a
bisection method [30]).

2) BOUNDING
For every reduced box M ′, an upper bound of ν(M ′) ,
max{f (ψ r )| g(ψ r )−h(ψ r ) ≤ 0,ψ r ∈ M ′∩[0,1]} is calcu-
lated such that

ν(M ′) ≤ µ(M ′) = f +(b′)−f −(a′). (21)

The upper bound µ(M ′) in (21) holds because f + and
f − are monotonically increasing functions. Furthermore,

µ(M ′) ensures limk→∞ µ(M ′k ) = f (ψ?r ), where {M
′
k} stands

for any infinite nested sequence of boxes and ψ?r is the
optimal solution to (18). At each iteration, any box M ′ with
µ(M ′) < ν is discarded because such a box does not contain
ψ?r anymore.

3) BRANCHING
At the end of each iteration, the box with the maximum upper
bound, denoted by M?

= [a?,b?], is selected and branched
to accelerate the convergence of the algorithm. The box M?

is divided into two boxes

M?
1 = {ψ r ∈ M

?
|ψr,j ≤ bc?j c}, (22)

M?
2 = {ψ r ∈ M

?
|ψr,j ≥ dc?j e}, (23)

where j = argmaxd=1,...,D(b
?
d−a

?
d ) and c

∗
j = (a?j+b

?
j )/2.

The DMF optimization problem in (18) is solved by itera-
tively executing the above three procedures until it converges
within ε-accuracy as shown in Algorithm 2. Despite the
intractability of the exact complexity analysis of Algorithm 2,
we can take a full-enumeration upper bound [31], i.e., 2D,
by exploiting the fact that the DMO-based method in Algo-
rithm 2 is based on the branch-and-bound (BnB), which is
close to the exhaustive search in the worst case [32]. Even
though the bound 2D is loose, it indeed provides insights
into the utility of the proposed DMO-based algorithm. Algo-
rithm 2 shows substantial efficiency when D is small (e.g.,
D < 10); however, its computational cost blows up as D
increases (e.g.,D > 20). This findingwill be further validated
in Section V-A.

B. DUAL OPTIMIZATION
An alternative approach to solving the BQP subproblem
in (10) is to transform it to a dual problem. To this end,
we formulate an equivalent form to the BQP in (10) as

min
x∈{+1,−1}D

xTA0x+aT x, (24)

where ρr in (10) is ignored, x = 2ψ r−1 ∈ {+1,−1}
D,

A0 =
1
4Sr , and a = 1

2S
T
r 1−vr . By introducing X0 = xxT

and X =
[ 1 xT

x X0

]
∈ R(D+1)×(D+1), the problem in (24) can

be rewritten as

min
x,X0
〈X0,A0〉+aT x, (25a)

s.t. diag(X0) = 1, (25b)

X � 0, (25c)

rank(X) = 1. (25d)

Solving (25) directly is NP-hard due to the rank constraint
in (25d), thus we turn to convex relaxationmethods. The SDR
to (25) can be expressed in a homogenized form with respect
to X as

min
X

f (X) , 〈X,A〉, (26a)

s.t. 〈B`,X〉 = 1, ` = 1, . . . ,D+1, (26b)
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X � 0, (26c)

where A =
[ 0 (1/2)aT

(1/2)a A0

]
∈ S(D+1)×(D+1) and B` =

[01 · · · 0`−1 e` 0`+1 · · · 0D+1] ∈ R(D+1)×(D+1). Note
that the diagonal constraint in (25b) has been equivalently
transformed to D+1 equality constraints in (26b). While the
problem in (25) is combinatorial due to the rank constraint,
the relaxed problem in (26) is a convex semi-definite pro-
gramming (SDP). In particular, the relaxation is done by
dropping the rank constraint.

We further formulate a regularized SDP formulation
of (26) as

min
X

fγ (X) , 〈X,A〉+
1
2γ
‖X‖2F ,

s.t. 〈B`,X〉 = 1, ` = 1, . . . ,D+1,

X � 0, (27)

where γ > 0 is a regularization parameter. With a
Frobenius-norm term regularized, the strict convexity of (27)
is ensured, which in turn makes strong duality hold for the
feasible dual problem of (27). In this work, we leverage this
fact that the duality gap is zero for (27) (a consequence of
strong duality) to solve the dual problem. In addition, the two
problems in (26) and (27) are equivalent as γ →∞.

Given the regularized SDP formulation in (27), its dual
problem and the gradient of the objective function are of
interest, which can be found in the following lemma.
Lemma 2: Suppose the problem in (27) is feasible. Then,

the dual problem of (27) is given by

max
u∈RD+1

dγ (u) , −uT 1−
γ

2
‖5+(C(u))‖2F , (28)

where u ∈ RD+1 is the vector of Lagrange multipliers
associated with each of the D+1 equality constraints
of (27), C(u) , −A−

∑D+1
`=1 u`B`, and 5+(C(u)) ,∑D+1

j=1 max(0, λj(C(u)))pjpTj , in which λj(C(u)) and pj, j =
1, . . . ,D+1, respectively, are the eigenvalue and correspond-
ing eigenvector of C(u). The gradient of dγ (u) with respect
to u is

∇udγ (u) = −1+γ8[5+(C(u))], (29)

where 8[5+(C(u))] , [〈B1,5+(C(u))〉, · · · , 〈BD+1,5+
(C(u))〉]T ∈ RD+1.

Proof: See Appendix C.
It is worth noting that dγ (u) in (28) is a strongly concave

function, thereby making the Lagrange dual problem (28) a
strongly convex problem having a unique global optimal solu-
tion [33]. Moreover, the dual problem in (28) is equivalent to
the following unconstrained convex minimization problem

min
u∈RD+1

hγ (u) , uT 1+
γ

2
‖5+(C(u))‖2F , (30)

with the gradient being ∇uhγ (u) = 1−γ8[5+(C(u))].
An efficient, first-order method, i.e, gradient descent (GD),

which is detailed in Algorithm 3, can be applied to directly
solve (30). Notice that, a simple GD is proposed here owing

Algorithm 3 GD for Solving the Dual Problem in (30)

Input: A, {B`}D+1`=1 , D, u0, γ , ε (tolerance threshold value),
and Imax (maximum number of iterations).

Output: u?.
1: for i = 0, 1, 2, . . . , Imax do
2: Calculate the gradient: ∇uihγ (ui).
3: Compute the descent direction: 1ui = −∇uihγ (ui).
4: Find a step size ti (via backtracking line search), and

ui+1 = ui+ti1ui.
5: if ‖ti1ui‖2 ≤ ε then terminate and return u? =

ui+1.
6: end if
7: end for

to the fact that the dual problem in (30) is unconstrained.
Indeed, we would need a projected GD method if there is
any constraint involved, for which the computational com-
plexity would be much larger (because of the projection at
each iteration). In Algorithm 3, only the gradient of hγ (ui),
i.e., ∇uihγ (ui), is required to determine the descent direc-
tion. It is therefore a more practical and cost-saving method
compared to standard Newton methods which demand the
calculation of second-order derivatives and the inverse of the
Hessian matrix. Moreover, Algorithm 3 does not rely on any
approximation of the inverse of the Hessian matrix such as
the quasi-Newton methods [34]. To find a step size in Step 4,
we apply the backtracking line search method [35], which
is based on the Armijo-Goldstein condition [36]. Finally,
the algorithm is terminated when the pre-designed stopping
criterion (for instance, ‖ti1ui‖2 ≤ ε in Step 5, where ε > 0
is a predefined tolerance) is satisfied.

The solution to the dual problem in (30) (or equiva-
lently (28)) produced by Algorithm 3, is not yet a feasible
solution to the BQP in (10). A randomization procedure [37]
can be employed to extract a feasible binary solution to (10)
from the SDP solution X? of (27). One typical design of
the randomization procedure for BQP is to generate feasi-
ble points from the Gaussian random samples via round-
ing [38]. The Gaussian randomization procedure provides a
tight approximationwith probability 1−exp(−O(D)), asymp-
totically inD [39]. By leveraging the fact that the eigenvalues
and corresponding eigenvectors of5+(C(u)) can be found by
Step 2 of Algorithm 3, we have

X? = γ5+(C(u?)) = γV+3+VT
+ = LLT ,

where 5+(C(u)) , V+3+VT
+ and L = V+

√
γ3+.

A detailed randomization procedure is provided in
Algorithm 4.

In Step 8 of Algorithm 4, the D-dimensional vector x̂ is
first recovered from a (D+1)-dimensional vector x̃`? by con-
sidering the structure of X in (25), and then used to approx-
imate the BQP solution based on (24). Also note that the
randomization performance improves with Irand. In practice,
we only need to choose a sufficient but not excessive Irand (for
instance, 50 ≤ Irand ≤ 100) achieving a good approximation
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Algorithm 4 Randomization

Input: A, 5+(C(u?)) = V+3+VT
+, D, γ , and Irand (the

number of randomizations).
Output: ψ̂ (an approximate solution to the BQP in (10)).
1: Obtain L = V+

√
γ3+ and LLT = X?.

2: for l = 1, 2, . . . , Irand do
3: Generation of an i.i.d. Gaussian random vector: ξ l ∼

N (0, ID+1).
4: Random sampling: ξ̃ l = Lξ l .
5: Discretization: x̃l = sign(ξ̃ l).
6: end for
7: Determine l? = argminl=1,...,Irand x̃

T
l Ax̃l .

8: Approximation: x̂ = x̃l?,1·x̃l?,2:D+1 and ψ̂ = x̂+1
2 .

for the BQP solution. Moreover, its overall computational
complexity is much smaller than the conventional randomiza-
tion algorithms [26], [37], [38] because our proposed Algo-
rithm 4 does not require the computation of the Cholesky
factorization. Finally, the computational complexity of the
dual optimization with GD (i.e., ‘‘Dual+GD’’) is dominated
by the EVD of a (D+1)×(D+1) matrix, needed to compute
∇uihγ (ui) in Step 2 of Algorithm 3, which is given byO((D+
1)3). This is indeed a significant improvement compared to
the existing SDRwR with complexity O(D4.5) [26], espe-
cially when D is large.

V. NUMERICAL RESULTS
In this section, we perform numerical evaluations of the
proposed KM learning methods for beam alignment/tracking
by incorporating the predictability and interpretability. In the
experiments, a beam space MIMO channel representation
of sparse mmWave channels is adopted [13], [14], [40] and
the rank of channel matrix is assumed to be 1. In particular,
the channel H in (3) is represented by

H = DrHvD∗t ,

where Dr ∈ CNr×Nr and Dt ∈ CNt×Nt are unitary discrete
Fourier transform matrices, while Hv ∈ CNr×Nt denotes the
virtual channel matrix of H. Let H τ

v ∈ C be the nonzero
entry of Hτv and L(H τ

v ) be the associated support location
(extracting the row-column information ofH τ

v ) at τ th channel
block. The temporal correlation between channel realizations
(from channel block τ to τ+1) is modeled by considering
the following two parts: i) Channel coefficient evolution. The
evolution of the propagation path gain can be modeled via the
first-order Gauss-Markov process [41]–[43] as

H τ+1
v = ρH τ

v+

√
1−ρ2vτ+1, (31)

where ρ ∈ [0, 1] is the temporal correlation coefficient and
vτ+1 ∼ CN (0, 1) denotes the innovation process independent
of H τ

v . The adoption of the Gauss-Markov process in the
spatial channel model [44], which is officially used in 3GPP
LTE [45], has been established in [42]. ii) Support/beam
variation. The slow variation of the support inHτv is modeled

by assuming that the support can only switch to its neighbors
and introducing a support transition probability defined as

p , Pr(L(H τ+1
v ) ∈ Lτ+1|L(H τ

v ) ∈ Lτ ) ∈ [0, 1], (32)

where Lτ = {(i, j)} returns the original location (ith row
and jth column of Hτv ) of the support at τ th channel block
and Lτ+1 = {(i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i, j+
1), (i+1, j−1), (i+1, j), (i+1, j+1)} is the set composed of
all possible support transition locations at (τ+1)th channel
block. Note that under the assumption of temporal correla-
tion, past CSI can be reused to refine the quality of the current
beam alignment and reduce the beam tracking overhead. This
can be achieved by exploiting the interpretability of KM as
demonstrated in Section III-B.

Moreover, we set Nt = Nr = |IF | = |IW |, IBCD = 10,
Irand = 100, and TFE = 8 throughout the simulations.
We evaluate the performance from the following four differ-
ent perspectives. In particular, we focus on the initial beam
alignment (τ = 1) from Section V-A to Section V-C, while
the beam tracking (τ > 1) is considered in Section V-D.

A. COMPUTATIONAL COST
We first compare the computational cost of the two proposed
KM learning methods (including the KMwith DMO in Algo-
rithm 2 and Dual+GD in Algorithm 3) with the existing KM
learning with SDRwR in [22, Algorithm 1]. The computa-
tional cost is evaluated by averaging the total running time
in seconds (measured by ‘‘cputime’’ in MATLAB running
on a PC with an Intel Xeon E5-1650 v3 3.50 GHz CPU
and 32 GB RAM) over 100 Monte Carlo simulations. Note
that the sampling rate for the initial beam alignment, defined
as the ratio of the number of beam pairs in the subsampled
training set at τ = 1 to the total number of the beam pairs
in the original codebook, is given by SR = |K|/|S| (the
superscript ‘τ = 1’ of K is omitted for brevity).

Table 1 lists the time consumption (in seconds) of the over-
all KM learning with three different algorithms for varying
D, Nt , Nr , and SR. It can be seen that the proposed methods
can achieve a reduced computational cost up to three orders
of magnitude, compared with the existing KM learning with
SDRwR. Especially, the KMwith DMO shows benefits when
D is small while the KM with Dual+GD exhibits better
performance when D is large. The above numerical results
coincide with the theoretical analyses in Section IV.

B. TRAINING AND PREDICTION PERFORMANCE
The training and prediction performance of the proposed
methods is assessed by adopting the root-mean-square-error
(RMSE) as a metric. The RMSEs for the training and predic-
tion phases, respectively, are given by

Etrain ,
( 1
|K|

∑
(t,r)∈K

|pt,r−θ?t
T
ψ?r |

2
) 1

2
,

Etest ,
( 1
|T |

∑
(t,r)∈T

|pt,r−θ?t
T
ψ?r |

2
) 1

2
.
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TABLE 1. Time consumption (in seconds) comparison of the KM learning-based methods.

FIGURE 4. The training and prediction performance comparison when
Nt = Nr = 16, D = 8, δ = 12 dB, and SR = 25%.

Fig. 4 displays the train and test RMSEs of the proposed
KM learning methods and the existing KM learning with
SDRwR, as a function of SNR, for Nt = Nr = 16, D = 8,
δ = 16 dB, and SR = 25%. Besides, another learning-based
technique called the nonnegative model (NNM) [46], which
is a convex relaxation of the KM, is included as a bench-
mark. While the NNM has a similar structure as the KM
in (2), the difference is that the NNM relaxes the binary
constraints on ψ r to a nonnegative box, i.e., ψ r ∈ [0, 1].
It can be observed that the proposed methods can achieve
similar good training and prediction performance as the
existing KM learning with SNRwR by using only a quarter
of samples, while reducing the computational cost substan-
tially as shown in Table 1. Despite a slightly better training
performance of the NNM, its prediction counterpart is sig-
nificantly deteriorated compared to the KM learning-based
methods due to the fact that θTuψ r with a relaxed indicator
vector ψ r of NNM no longer represents the outcome of
a random variable. This further leads to a degradation of
the beam alignment performance, which can be found in
Section V-C.

C. SPECTRAL EFFICIENCY
Next, we evaluate the performance of the proposed
approaches regarding the predictive beam alignment for the
initial channel block (τ = 1). Several conventional beam
alignment techniques including the exhaustive beam search,

FIGURE 5. The effective spectral efficiency comparison for the initial
beam alignment (τ = 1) when Nt = Nr = 16, D = 8, and δ = 12 dB.

randomly selected beams, and hierarchical codebook, are
considered as the baselines. For a fair comparison, we adopt
the effective spectral efficiency as a metric, which is defined
as

R =
T−K
T

log2(1+η),

where the pre-log factor (T−K )/T represents the portion of
channel coherent resources contributed to data communica-
tion. In particular, the sampling rate for the exhaustive search
and randomly selected beams is 100% and 25%, respectively.
By taking account of both the training overhead (2 log2 Nt+
2 log2 Nr ) and feedback overhead (log2 Nt ), the sampling rate
for the hierarchical codebook is 8% [7]. We set the sampling
rate for the KM learning-based methods and NNM to be
SR= 25%.
In Fig. 5, we plot the effective spectral efficiency ver-

sus SNR by considering the initial beam alignment for
Nt = Nr = 16, D = 8, δ = 12 dB, and assum-
ing that the channel block length is T = 512 channel
uses. It can be found that our proposed methods outperform
the exhaustive search, randomly selected beams and NNM
throughout the entire SNR region. In addition, despite a
slightly better performance shown by the hierarchical code-
book when the SNR is high, a superior performance in the
low SNR regime of the proposed methods can be observed,
which is more appreciated in mmWave communication
systems.
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FIGURE 6. The interpretable beam tracking performance comparison when Nt = Nr = 16, D = 8, δ = 12 dB, p = 0.05, ρ = 0.95, and α = 0.75:
(a) SNR= −10 dB, (b) SNR= 0 dB, (c) SNR= 10 dB.

FIGURE 7. The effect of parameter settings on beam tracking
performance of KM learning with Dual+GD when Nt = Nr = 16, p = 0.05,
ρ = 0.95, and SNR= 10 dB.

D. LOW-LATENCY BEAM TRACKING VIA
INTERPRETABILITY
Finally, the interpretable beam tracking performance is eval-
uated by considering multiple channel blocks (τ = 1, . . . , 5).
The temporal correlation coefficient parameter ρ in (31) and
the support transition probability p in (32) are set to 0.95 and
0.05, respectively. In Fig. 6, we depict the effective spectral
efficiency with a variation of the channel block index for
Nt = Nr = 16, D = 8, δ = 12 dB, and α = 0.75
under three different scenarios of SNR. For the initial beam
alignment when τ = 1, we assume SR = 50% for the
proposed KM learning-based methods and NNM. It can be
seen that, by exploiting the interpretability of KM, the pro-
posed methods can be well adapted to the channel temporal
correlation and beam variation, and subsequently exhibit sig-
nificantly better performance than the baseline schemes in
term of beam tracking. In particular, due to the relaxation
of the binary indicator vector ψ r , the NNM sacrifices the
highly interpretable nature of KM. Moreover, the KM with
Dual+GD shows a slightly better performance than the KM
with DMO when the SNR is high, while the two proposed
KM learning methods perform indistinguishably in the low
SNR regime.

We further investigate the impact of different parameter
settings on the beam tracking performance of the proposed
KM learning with Dual+GD when Nt = Nr = 16, p = 0.05,
ρ = 0.95, and SNR= 10 dB. It is observed from Fig. 7 that
the effective spectral efficiency improves with the increase
of SR. This is attributed to the fact that the accuracy of the
initial beam alignment plays an essential role in succeeding
beam tracking. Besides, a performance improvement can be
attained asD and δ grow. By increasing α in (15), the spectral
efficiency increases a lot at the beginning, but degrades as
the channel block index grows. This phenomenon can be
interpreted as: the performance improvement is due to the
significantly reduced beam tracking overhead as α increases,
while a high α excludes potential beam pairs which further
leads to the performance degradation in subsequent channel
blocks.

VI. CONCLUSION
In this paper, we investigated a joint scheme of predic-
tive beam alignment and interpretable beam tracking for
mmWave communication systems. The distinctive and pow-
erful interpretability of KM has been exploited to achieve
an agile beam tracking with low latency. Moreover, two
enhancedKM learning algorithmswere proposed, by leverag-
ing DMO and dual optimization, to reduce the computational
cost of the existing KM learning with SDRwR by up to three
orders of magnitude. Numerical results demonstrated the
superiority of the proposed KM learning methods compared
to other benchmarks in terms of computational complexity,
training/prediction performance, spectral efficiency for beam
alignment/tracking, and robustness in the low SNR regime.

APPENDIX A
PROOF OF THEOREM 1
The two random variables Xt,r1 and Xt,r2 share the same
alphabet X = {1, 0}. By (1), X−1t,r1 ({X (x)}) and X−1t,r2 ({X (x)})
represent the inverse images of the events Xt,r1 = X (x) and
Xt,r2 = X (x), x ∈ {1, 2}, respectively. According to (2),
we have ψr,d = 1 only if ωd ∈ X

−1
t,r ({X (1)}), r ∈ {r1, r2},

d ∈ {1, . . . ,D}. Therefore, we obtain that supp(ψ r2 ) ⊆
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supp(ψ r1 ) ⇒ X−1t,r2 ({X (1)}) ⊆ X−1t,r1 ({X (1)}), and conse-
quently Xt,r1 = 1⇒ Xt,r2 = 1 (γt,r1 ≥ δ ⇒ γt,r2 ≥ δ).

Moreover, the fact that � = X−1t,r ({X (1)})∪X−1t,r ({X (2)})
and X−1t,r ({X (1)})∩X−1t,r ({X (2)}) = φ, r ∈ {r1, r2}, results in
supp(ψ r2 ) ⊆ supp(ψ r1 ) ⇒ X−1t,r1 ({X (2)}) ⊆ X−1t,r2 ({X (2)}),
which further leads to Xt,r2 = 0 ⇒ Xt,r1 = 0 (γt,r2 < δ ⇒

γt,r1 < δ).

APPENDIX B
PROOF OF LEMMA 1
Given the definition of f + and f − in (18), the objective func-
tion f in (18) is attained by transforming the minimization
to the maximization and discarding the constant ρr in (10).
Besides, f + and f − are both increasing functions with respect
to ψ r ∈ [0,1] because vr > 0 and Sr is PSD.
The binary constraintsψr,d ∈ {0, 1}, d = 1, . . . ,D, can be

equivalently rewritten as

D∑
d=1

ψr,d (1−ψr,d ) ≤ 0, ψr,d ∈ [0, 1], ∀d ∈ {1, . . . ,D},

which is exactly g(ψ r )−h(ψ r ) ≤ 0, ψ r ∈ [0,1] in (18),
where g and h are increasing on RD

+.

APPENDIX C
PROOF OF LEMMA 2
The Lagrangian of the primal problem in (27) is given by

L(X,u,D)

e= 〈X,A〉+
1
2γ
‖X‖2F−〈X,D〉+

D+1∑
`=1

u`(〈X,B`〉−1), (33)

where u ∈ RD+1 andD � 0 are Lagrangianmultipliers. Since
the problems in (27) and (33) are feasible, strong duality holds
and ∇XL(X?,u?,D?) = 0, where X?, u?, and D? are optimal
solutions to (33). Then we have

X? = γ
(
D?−A−

D+1∑
`=1

u?`B`
)
= γ (D?+C(u?)), (34)

where C(u?) = −A−
∑D+1
`=1 u

?
`B`. Substituting X? in (33),

we obtain the dual formulation

max
u∈RD+1,D�0

−uT 1−
γ

2
‖D+C(u)‖2F . (35)

For a given u, the dual problem in (35) is equivalent to

min
D�0

γ

2
‖D+C(u)‖2F . (36)

The solution to (36) is D? = 5+(−C(u)). Due to the
fact that C(u) = 5+(C(u))−5+(−C(u)), it follows D?+
C(u) = 5+(C(u)). Thus the dual formulation in (35) can
be simplified to (28).

We take the first-order derivative of dγ (u) in (28) with
respect to u and obtain

∇udγ (u) = −1−γ∇u
(1
2
‖5+(C(u))‖2F

)
= −1+γ8[5+(C(u))],

where the last equality is due to ∇Z( 12‖5+(Z)‖
2
F ) =

∇Z( 12
∑N

i=1(max(0, λi(Z)))2) = 5+(Z), where λi(Z) is the
ith eigenvalue of Z ∈ RN×N .
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